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1. INTRODUCTION

The important concept of a sun, which was first introduced by Efimov and
Steckin in [17], arises quite naturally in the general theory of approximation
in normed linear spaces. We recall that a set V is a sun iff whenever Vo E V is
a best approximation to some element x (rf: V), then Vo is a best approximation
to every element on the ray from Vothrough x. Since every convex set has this
property, a sun may be regarded as a generalization of a convex set. Vlasov
[21] showed that in a smooth Banach space every proximinal sun is convex.
(A brief proof of this will be given in Section 2). Perhaps the most famous
unsolved problem in approximation theory is whether or not every
Tchebycheff set in a Hilbert space is convex. In view of Vlasov's result, this
problem may be stated equivalently as "Is every Tchebycheff set in a Hilbert
space a sun?" Brosowski [6] has shown that being a sun is equivalent to
being a Kolmogorov set (cf. Theorem 2.4). Also, he and his colleagues have
indicated a theory of approximation for such sets which closely parallels the
known linear or convex theory (cf., e.g., [10]). In recent years, a number of
writers have studied certain classes ofsuns (e.g., the so-called "regular sets" in­
troduced by Brosowski [5]); these authors have tried to determine, among oth­
er things, those spaces in which every sun is a member of this class [3-7, 8, 10].

In the present work, we define the concept of a "moon"!, which is a

* The work of this author was performed at The Pennsylvania State University during
the summer of 1969.

t This author was supported by a grant from the National Science Foundation.
1 Originally called "sign regular," [9]. The present name was given on "Moonday,"

July 21, 1969, for obvious reasons.

176
Copyright © 1972 by Academic Press. Inc.
All rights of reproduction in any form reserved.



SUNS, MOONS, AND QUASI-POLYHEDRA 177

generalization of a sun. We are especially interested in determining those
normed linear spaces in which every moon is a sun. Knowledge of such spaces
is often quite useful in practice since it is generally much easier to verify that
a given set is a moon than verify it is a sun. Our approach to this problem is
via certain geometric properties of the points of the unit sphere, in particular
being "nonlunar", "strongly nonlunar", or "quasi-polyhedral" (abbr. QP)
(in order of decreasing generality).

Section 2 includes the basic definitions, notation, and a number of general
results. The main result of that section (Theorem 2.18) states that if each point
of the unit sphere is strongly nonlunar, then every moon is a sun. We observe
(Theorem 2.22) that every point of the unit sphere is QP if the unit ball is a
"convex polytope" in the sense of Maserick [19]. Further, the finite-dimen­
sional spaces in which each point of the unit sphere is QP are precisely those
whose unit ball is polyhedral (Theorem 2.19). In Section 3 we consider certain
product spaces. We prove, for example (Theorem 3.2), that each point of the
unit sphere of the co-product of normed spaces is strongly nonlunar (or QP)
iff each of the component spaces has the same property. The space Co(T), T
locally compact Hausdorff, is studied in Section 4. The main results there
(Theorems 4.1 and 4.4) may be summarized as follows: Each point of the unit
sphere in Co(T) is strongly nonlunar; each point is QP iff T is discrete. In
Section 5 a similar study is made of the space L1(T, l:, J1-), where (T, l:, J1-) is
a-finite. The main results there (Theorems 5.4 and 5.6) may be stated as: Each
point of the unit sphere in L1(T, l:, J1-) is strongly nonlunar iff T is purely
atomic; each point is QP iff T is a finite union of atoms. In Section 6 we
remark about certain related matters and pose some open problems. In
particular, we observe a certain close relationship (Theorem 6.3) between
the QP property, property (P) of Brown [12], and property Q of Deutsch and
Lindahl [I5].

2. NOTATION, DEFINITIONS, AND SOME GENERAL RESULTS

Let X be a real normed linear space, x* its dual space,

B(x, r) = {y EX: II x - y II < r}, and SeX) = {x EX: II x II = I}.

For any x E X, we define the peak set of x by

P(x) = {x* E S(X*) : x*(x) = II x II}.
Given Vo, XEX, we define the (open) cone of support at Voin the direction x, by

K(vo, x) = {v EX: x*(v - vo) < 0 V x* E P(vo - x)}

= {v EX: x*(v - x) < II Vo - x II Vx* E P(vo - X)}2.

2 Observe that K(vo, x) = {v E X: x*(v - Yo) > 0 Vx* E P(x - Do)}, a fact which is
sometimes useful.
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Since P(vo - x) is a weak* compact convex extremal subset ofS(X*), we can
restrict ourselves, in the definition of K(vo , x), to those x* E ext P(vo - x).
(Here, and in the sequel, "ext" is an abbreviation for "the set of extreme
points of.") In dealing with more than one normed linear space, we shall
often use subscripts to emphasize the space in which we consider the ball,
cone, etc. ; e.g., Bx(x, r), Kx(vo , x), etc.

There is a useful alternate representation for K(vo, x).

LEMMA 2. I. K(vo , x) = U,,>o B(vo+ A(X - vo), AII Vo- x II).

Proof If II v - Vo - A(X - vo)11 < AII Vo- x II, then for any x* E P(vo - x),

AII VO - x II > x*[v - Vo - ,\(x - vo)]

= x*(v - vo) + AII VO - x II ;

so x*(v - vo) < 0 and v E K(vo , x).
Conversely, let v E K(vo , x). The open line segment (vo , v) must intersect

B(x, II VO - x II) for, otherwise, by the Eidelheit separation theorem,
we could find an x* E P(vo - x) with x*(v - vo) ?o 0, which contradicts the
choice of v. Choose 0 < A < 1 such that z = AVo + (I - A) v satisfies
liz - x II < II Vo- x II . Taking ex = 1/(1 - A), we obtain

I
II v - [vo + ex(x - vo)]11 = T="X II z - x II < ex II VO - x II·

Thus v E B(vo + ex(x - vo), ex II VO - x II). I

COROLLARY 2.2. IfXl = Vo + A(X - vo)for some A > 0, then K(vo, Xl) =
K(vo, x).

DEFINITIONS 2.3. A set V C X is called a Kolmogorov set iff whenever
VoE V is a best approximation to x E X, then

(K) min x*(v - vo) :(; 0
X*EP(X-VO)

vV E V.

The set V is called a sun iff whenever Vo E V is a best approximation to x E X,
then Vo is also a best approximation to Vo + A(X - vo) VA ?o 0, i.e. (if x =1= vo),
to each point on the ray from Vo through x.

An interesting exposition on Kolmogorov sets was given by Brosowski [8].
It is easy to show that the condition (K) is always sufficient for Vo to be a best
approximation to x. The necessity of condition (K) was recently discussed by
Brosowski and Wegmann [10]. The concept of a sun was introduced by
Efimov and Steckin [17] and further developed by Vlasov [21] (cf. also the
encyclopedic monograph of Singer [20]).
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THEOREM 2.4. Let vex. The following are equivalent.

(1) V is a Kolmogorov set.

(2) V () K(vo , x) = 0 whenever Vo E V is a best approximation to x.

(3) V is a sun.

Proof (1) =:> (2). Let Vo E V be a best approximation to x. By hypothesis,

On the other hand,

max x*(v - vo) ;): 0
X*EP(VO-X)

Vv E V.

K(vo, x) = {v: x*(v - vo) < 0 Vx* E P(vo - x)}

= {v: max x*(v - vo) < O},
X*EP(VO-X}

and so V () K(vo , x) = 0.

(2) =:> (3). Let Vo E V be a best approximation to x and let A> O. If
Xl = Vo + A(x - vo) then K(vo , Xl) = K(vo, x) by Corollary 2.2 and so
K(vo , Xl) () V = 0. From Lemma 2.1 we obtain, in particular, that

V () B(xi , II Xl - Vo II) = 0,

and so Vo is a best approximation to Xl •

(3) =:> (1). Let Vo E V be a best approximation to X and let v E V. If
x*(v - vo) > 0 Vx* E P(x - vo), then v E K(vo , x), and so

VE B(vo+ A(x - vo), AII X - Vo II)

for some" > O. Thus

II Vo+ A(X - Vo) - v II < AII x - Vo II = II Vo + A(x - vo) - Vo II ,

which contradicts the hypothesis that V is a sun. Hence

min x*(v - vo) :(; O. I
X*EP(X-VO)

The equivalence of (1) and (3) in Theorem 2.4 had been proved earlier by
Brosowski [6] by a different method.

A normed linear space X is called smooth if there is a unique supporting
hyperplane to the unit sphere at each point, i.e., if P(vo) is a singleton for
each Vo E S(X). A subset V of X is called proximinal if each X E X has at least
one best approximation in V. We can now give a new short proof of a well­
known result of VIasov (cf. [21; or 20, p. 344]).
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THEOREM 2.5. Let X be a smooth normed linear space. Then each proxi­
minal sun is convex.

Proof. Let V be a proximinal sun. If V is not convex, there exist Vl , V2 E V
such that x = AVl + (1 - A) V2 1= V for some 0 < A < 1. Let Vo E V be a best
approximation to x. Let {x*} = P(vo- x). By Theorem 2.4, V n K(vo, x) = 0,

and so x*(vi - vo) ): 0 for i = 1,2. Thus

o< II vo - x II = x*(vo - x) = .\x*(vo - Vl) + (1 - A) x*(vo - v2) :::;; 0,

a contradiction. I
Using Theorem 2.4, one can also easily verify the known fact that every

convex set is a sun. (It is easy to construct examples of nonconvex suns.)
Theorem 2.4 suggests (at least) one way of generalizing the concept of a sun.

DEFINITION 2.6. Let vex. A point Do E V is called a lunar point if x E X

and V n K(vo, x) =1= 0 imply Do E V n K(vo , x). (As a consequence of the
next lemma, we may assume in this definition that x has Do as a best approxi­
mation from v.) V is called a moon if each of its points is lunar.

LEMMA 2.7. Let V C X and Vo E V. The following are equivalent:

(1) Vo is a lunar point.

(2) Whenever Vo is a best approximation to an x E X with

V n K(vo , x) =1= 0, then Vo E V n K(vo , x).

Proof (1) => (2) is trivial.

(2) => (1). Let x E X and V n K(vo , x) =1= 0. We have to show

Vo E V n K(Do , x).

If Vo is not a local best approximation to x (i.e., if "IE > 0 there is a v. E V
such that II v. - Vo II < E and II v. - x II < II Vo - x [I), then

v. E B(x, II vo - x II) C K(vo , x),

so VoE V n K(vo, x). Thus we can assume Vo is a best approximation to x
from V n B(vo , E) for some E > O. Let y = Vo+ A(x - vo) where

o < A< E/211 Vo - x II .

Then K(vo , y) = K(vo , x), II y - Vo II < E/2, and Vo is a best approximation

to y from V. Thus VoE V n K(vo , y) = V n K(vo , x). I

COROLLARY 2.8. Every sun is a moon.
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This follows from Theorem 2.4 and Lemma 2.7.
In the important special case V = SeX), the definition of a lunar point of V

can be somewhat simplified. Indeed, Vo E SeX) is a lunar point iff for each

x E B(O, 1) having Voas a best approximation from SeX), VoE K(vo, x) () SeX).
To shorten the writing, we define, for each Vo E SeX),

cr(vo) = {x E B(O, I) : Vo is a best approximation to x from SeX)}

= {x E B(O, I) : II Vo - x II = 1 - II x II}
= {x E B(O, 1) : Vo = x + (I - II x II) u for some u E SeX)}.

Thus VoE SeX) is a lunar point iff VoE K(vo , x) () SeX) Vx E m(vo).

DEFINITIONS 2.9. Let Vo E SeX).

(a) Vo is called a nonlunar point of SeX) if it is not a lunar point, i.e.,

if there is some x E B(O, 1) such that Vo¢; K(vo, x) () SeX).

(b) Vo is called a strongly nonlunar point ofSeX) iffor each u E K(vo , 0)
there is an x E B(O, 1) such that u E K(vo , x) and Vo ¢; K(vo , x) () SeX). The
space X is called strongly nonlunar if·each Vo E SeX) is strongly nonlunar.

(c) Vo is called a quasi-polyhedral (abbr. QP) point ofSeX) if

Vo¢ K(vo , 0) () SeX).

X is called a QP-space if each VoE SeX) is QP.
It should be noted that (by an argument similar to that used in the proof

of Lemma 2.7) the x E B(O, I) which appears in the definitions ofnonlunar and
strongly nonlunar points may be restricted to lie in (;r(vo)' We leave to the
reader the straightforward task of verifying that the QP property is hereditary
(i.e., if X is QP, so is every subspace of X). On the other hand, Theorem 4.1
shows that strong nonlunarity is not a hereditary property.

In verifying whether a given point is nonlunar, strongly nonlunar, or QP,
it is useful to observe that if Vo E SeX) and x E B(O, 1), the following two
conditions are equivalent:

(1) Vo ¢; K(vo , x) () SeX).

(2) There exists an € > °such that B(vo , €) () K(vo , x) C B(O, 1).

THEOREM 2.10. Let Vo E SeX) and consider the following three statements:

(1) Do is QP.

(2) Do is strongly nonlunar.

(3) Do is nonlunar.

Then (1) => (2) => (3).
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In addition, ifanyone of the following three conditions holds, then (3) => (1),
and so, all three statements above are equivalent.

(a) Vo E ext SeX).

(b) X is two-dimensional.

(c) X is smooth.

Proof The implications (1) => (2) => (3) are trivial (e.g., for (1) => (2),
take x = 0). Now suppose Vo is nonlunar. Then there is an x E m(vo) such that

Vo 1- K(vo , x) (") SeX). We shall show that if anyone of the conditions (a), (b),
or (c) is satisfied, then Vo is QP. This will be the case, in particular, when
K(vo , x) = K(vo , 0).

Case 1. Vo E ext SeX).
Since Vo = x + (1 - II x II) u for some U E SeX), it follows that either

x = 0 or Vo= II x II x/II x II + (1 - II x II) u. If the latter is true, then
x/II x II = U = Vo • Hence x = II x II Vo and, in particular, K(vo , x) = K(vo , 0).

Case 2. X is two-dimensional.
We may assume Vo 1-ext SeX). Then Vo must be interior to some line

segment L(vo) in SeX). In particula~, Vo is a smooth point,

K(vo ,0) (") SeX) C Sex) ,...., L(vo),

and so, Vo 1- K(vo , 0) (") SeX), i.e., Vo is QP.

Case 3. X is smooth.
The proof in this case, and hence the theorem, will follow immediately

from (3) of the following lemma.

LEMMA 2.11. Let Vo E SeX) and x E m(vo). Then:

(1) P(vo) = P(vo - x) (") P(x).

(2) K(vo , x) C K(vo , 0).

(3) If X is smooth, K(vo , x) = K(vo , 0).

Proof of the Lemma. (1) Let x* E P(vo). Then

II Vo- x II + II x II = II VoII = x*(vo) = x*(vo - x) + x*(x)

~ II Vo - x II + II x II
and so, x* E P(vo - x) (") P(x). Conversely, suppose x* E P(vo - x) (") P(x).
Then

x*(vo) = x*(vo - x) + x*(x) = II Vo- x II + II x II = 1,

so x* E P(vo).
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(2) From (l) we obtain P(vo) C P(vo - x) and so, K(vo , x) C K(vo, 0).

(3) If X is smooth, then P(y) is a singleton for each 0 =1= y E X; so by
(I) we obtain P(vo) = P(vo - x) and hence K(vo ,0) = K(vo , x).

This proves Lemma 2.11 and hence completes the proof ofTheorem 2.1O. I

Remark 2.12. For a two-dimensional space, we have shown that the
concepts "nonlunar," "strongly nonlunar," and "QP" are the same. There
exists, however, a three-dimensional space which contains nonlunar points
which are not strongly nonlunar [11]. Also, we shall see later that there are
infinite-dimensional strongly nonlunar spaces which are not QP. However, it
is an open question whether there are finite-dimensional spaces with this
property.

During the course of the proof of Case 2 in Theorem 2.10, we have actually
verified the following result:

LEMMA 2.13. Let X be two-dimensional and Vo E SeX). If Vo is lunar, then
VoE ext SeX).

It is clear that S(X)-or, for that matter, any symmetric subset of S(X)­
is never a sun. On the other hand, with the aid of Theorem 2.10, we can give
certain conditions which insure that SeX) is a moon.

THEOREM 2.14. If X is strictly convex, then SeX) is a moon.

Proof Let Vo E SeX) and x E Cl(vo). By the strict convexity, x = II x II vo ,
and so K(vo , x) = K(vo ,0). Since each x* E P(vo) attains its norm on SeX)
only at Vo , it follows that x*(v) < 1 = x*(vo) 'Vv E SeX) ,...., {vo}. Thus

K(vo , x) n SeX) = K(vo , 0) n SeX) = SeX) ,...., {vo},

and so VoE K(vo , x) n SeX), i.e., Vo is a lunar point. I

By combining Lemma 2.13 and Theorem 2.14, we obtain

COROLLARY 2.15. Let X be two-dimensional. Then SeX) is a moon if and
only if X is strictly convex.

A set E C SeX) is called an exposed set of SeX) if E is the intersection of
SeX) with a supporting hyperplane to SeX), i.e., if E = {v E SeX) : x*(v) = I}
for some x* E S(X*).

THEOREM 2.16. Let X be smooth. Then SeX) is a moon if and only if each
exposed set ofseX) has an empty interior relative to seX).
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Proof If some exposed set E had a relative interior point Vo , then (by
smoothness)

K(vo , 0) n SeX) = SeX) '" E,

and so Vo ¢ K(vo , 0) n SeX). Thus SeX) is not a moon.
Conversely, suppose each exposed set has an empty relative interior. Let

Vo E SeX) and x E ot(vo). Since X is smooth, P(vo - x) = {x*} is a singleton,
so that E = {v E SeX) : x*(v) = I} is an exposed set which contains Vo'
Note that K(vo , x) n SeX) = SeX) '" E =1= 0. Since E has an empty relative
interior, it follows that in each neighborhood of Vo there points of SeX) '" E.

Thus Vo E K(vo , x) n SeX), and so SeX) is a moon. I
Remark 2.17. The theorem is not true without the smoothness assump­

tion. A 3-space whose unit ball is a "double ice-cream cone" (i.e., the convex
hull of the union of a circle and a line segment through its center, normal to
its plane) provides an example. In this case, the vertices (in particular) are
nonlunar points, but each exposed set of SeX) has an empty relative interior.

The fundamental result concerning strong nonlunarity is the following.

THEOREM 2.18. Let X be strongly nonlunar. A subset of X is a moon if and
only if it is a sun.

Proof Every sun is a moon (Corollary 2.8). Let V be a moon which is not
a sun. Then there is a Vo E V which is a best approximation to some x E X
with K(vo, x) n V =1= 0. Let v E K(vo , x) n V. By the strong nonlunarity
of the sphere Sex, II Vo - x 11)(= II Vo - x II SeX) + x) at vo, there exists an
Xl E B(x, II Vo - x II) having Vo as a best approximation in Sex, II Vo - x II) such
that v E K(vo , Xl) and Vo ¢ K(vo , Xl) n Sex, 1\ Vo - x II), i.e., there is an e > 0
such that

B(vo , e) n K(vo , Xl) C B(x, II Vo - x II) ex", V,

and so Vo ¢ K(vo , Xl) n V. But this contradicts the fact that V is a moon. I
It is an open question whether the converse is true. That is, if every moon

in X is a sun, must X be strongly nonlunar?
Before we characterize the finite-dimensional QP spaces, let us observe that

VoE SeX) is QP iff there is an e > 0 such that

B(vo , e) n K(vo, 0) = B(vo , e) n B(O, 1)

which holds iff there is an e > 0 such that

B(vo, e) n bd K(vo ,0) = B(vo, e) n SeX).

(Here bd K(vo , 0) denotes the boundary of K(vo , 0).)
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THEOREM 2.19. A finite-dimensional space is QP if and only if its (closed)
unit ball is a polytope.

Proof Let B(O, 1) be a polytope and let Vo E SeX). Then B(O, 1) = niSI Ei,
where 1 is finite, Ei = {x EX: Xi*(X) ~ I}, and Xi* E S(X*). The hyper­
planes xt-1( 1) which determine the half-spaces Ei will be denoted by Hi . Let
10 = {i E 1: Vo E Hi} and set € = dist (vo , Ui¢Io Hi)' Since Ui¢Io Hi is closed,
€ > O. Now dist (vo ,Hi) = 1 - Xi*(VO) for every i (cf., e.g., [14, Lemma 2.1]),
so that E = infi¢Io dist (vo , Hi) = infi¢Io [1 - Xi*(VO)]' We shall show that

B(vo, E) n (n Ei) = B(vo, E) n (n Ei).
~EI ~E~

(1)

Indeed, if (1) is false, there is an x E X with x E B(vo , €) and x¢: Ei for someo
io E 1 ,......, 10 . Then

and hence II x - Vo 1/ > E. This contradiction establishes (1). From (1) we
obtain

B(vo , E) n B(O, 1) = B(vo , E) n (n Ei)
iEI

= B(vo , E) n en Ei) = B(vo , E) n K(vo , 0).
tElo

Thus Vo is QP.
Conversely, suppose X is an n-dimensional QP space. Consider first the

case n = 2. For each v E SeX), there is an €v > 0 such that

B(v, €v) n bd K(v, 0) = B(v, Ev) n SeX). (2)

By the compactness of SeX), there is a finite set of Vi E SeX) such that
{B(vi' Ev };" covers SeX). Hence

1

m

SeX) = U [B(vi' EVi) n bd K(Vi' 0)].
1

But since bd K(v, 0) consists of at most two lines for each v E SeX), it follows
that SeX) consists of a finite number of line segments, i.e., X is polyhedral.
Now suppose n > 2. Then since the QP property is hereditary, each 2­
dimensional subspace of X is QP. By the above argument, each 2-dimen­
sional subspace ofX is polyhedral. By a well-known result [I8a, Theorem 4.7],
it follows that X must be polyhedral. I
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COROLLARY 2.20. Let X be two-dimensional. Then each point of SeX) is
nonlunar if and only if SeX) is a polygon.

As an application of this corollary we consider the following unit sphere in
the plane which has exactly two lunar points, the remaining being QP points.

EXAMPLE 2.21. An "infinite polygon" in the plane. Let tn = 1 - (1/2n )

(n = 0, 1,2,...) and define a function f on [0, 1] to be linear on each sub­
interval [tn, tn+l] and to satisfy f(lo) = f(O) = l,j(ln+l) = tUn + f(tn))
(n = 0, 1,...), and f(1) = O. Define get) t - 1 (0 ::( t ~ 1),

fl(t) - -f(-t) (-1 ::( t ~ 0),

and gl(t) - -g(-t) (-1 ::( t ~ 0). Then the union SeX) of the graphs of
f, g, fl , and gl is what we call an "infinite polygon" in the plane. Clearly,
SeX) is QP at every point, with the exception of the two "infinite" points
(1,0), (-1,0), and these must be lunar points.

Maserick [19] has defined a "convex polytope" P as an intersection of a
family of half-spaces: P = nieI Ei (corresponding to the hyperplanes
{Hi: i E I}), such that, for every x E X, there is a finite subcollection 10 C I
with x E ni¢Io Ei .

THEOREM 2.22. IfB(O, 1) is a convex polytope (in the sense of [19]), then X
is a QP space.

Proof Properties 2.3, 2.4, and 2.5 of [19] assert that, if B(O, 1) is a convex
polytoPe and Vo E SeX), then 10 = {i E I : Vo E Hi} is a nonempty finite family
and Ui¢Io Hi is a closed set. Setting E = dist(vo , Ui¢Io Hi), we observe that
exactly the same argument used in the proof of Theorem 2.19 shows that Vo

is QP. I
From the results of [19], we quote the following:

(l) Convex polytopes in infinite-dimensional spaces have no extreme
points.

(2) If the unit ball of X is a convex polytope, so is the unit ball of
every subspace of X.

(3) The unit ball of co(T) is a convex polytope for every discrete T;

(4) If the unit ball of X is a convex polytope with a countable number
of exposed sets, then X is isometric to. a subspace of Co •

We give now an example, which is a simplification of a more general one
given in [19], ofa QP space whose unit ball is not a convex polytope. LetXbe
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the II-product ofthe real line R and Co , i.e., X = (R X co)/ (2) • (See Section 3
1

for some basic results on product spaces.) Then X is QP since both Rand
Co are (Theorem 3.5), but, by property 2.4 of [19], B(O, 1) is not a convex
polytope since the vertex x = (1,0,0,...) belongs to infinitely many exposed
sets.

3. PRODUCT SPACES

Let I be an index set and let Y be a normed linear space of real-valued
functions on L If, for each i E I, a normedlinear space Xi is given, (niel Xih
denotes the (Y-product) space of all functions x on I such that

(1) xCi) E Xi for every i E I,

(2) If Va: is the function on I defined by va:(i) = II x(i)11 , then Va: E Y.

We define a norm on (niel Xih by II x II =11 Va: Ily .
We shall be mainly interested in the cases where Y = co(I), he/), or /",(1).

It is well known (cf. e.g., [13, p. 31]) that the dual space

may be identified with

(n Xi*) [resp. (n Xi*) ]
iel /1(1) iel /",W

via the mapping x* - (X*U»iel , with x*U) E Xi*, defined by

x*(x) = L x*(i) xU)
iel

for every x in the product space. If X = (niel Xi)/ (I) , then x E ext SeX) if
1

and only if xCi) E ext S(Xi) for some i = io , and xCi) = ° if i =1= io .
If X = (noel Xi)/ (I), then x E ext SeX) if and only if xCi) E ext S(Xi) for
every i E L, '"

We first consider the space X = (niel Xi)c (I) • Let x E X. We define theo
critical set of x by

crit x = {i E I : II xCi)11 = II x II}.

Observe that if Vo E SeX) and x E a'(vo), then crit Vo C crit (vo - x) (since if
i E crit vo , then

II VoII = II vo(i)11 ~ II voCi) - x(i)11 + II x(i)11 ,;;;; II vo- x II + II x II = II Vo II ,

and so II vo(i) - x(i)1I = II vo- x II).



188 AMIR AND DEUTSCH

K(vo, X) = {V: For each i E crit(vo - x), x*(i)[v(i) - vo(i)] < 0

for every x*(i) E (ext) P[vo(i) - x(i)]}

= {v: For each i E crit(vo - x), v(i) E KX;Cvo(i), x(i»}.

LEMMA 3.1. Let X = (OiEI Xi)co(J) and Vo E SeX). Then Vo is strongly
nonlunar (resp. QP) ifand only if, for every i E crit Vo , vo(i) is strongly nonlunar
(resp. QP) in S(Xi ).

Proof Let Vo be strongly nonlunar and let ioE crit Vo' We show vo(io) is
strongly nonlunar in S(Xi ). Let u(io) E Kx . (vo(io), 0). Define u by

o '0

if i=io ,
if i #- io •

Then u E K(vo ,0). Thus by strong nonlunarity there exists an x E a'(vo).
II x II < 1, such that u E K(vo , x), and there exists an € > 0 such that

B(vo, €) n K(vo , x) C B(O, I).

In particular, x(i) E BXi(O, I) for every i. Now if II v - VO II < € and if for
every i E crit(vo - x), v(i) E Kx(vo(i), x(i», then II v II < 1. Since U E K(vo , x)
and ioE crit Vo C crit(vo - x), it follows that u(io) E Kx (vo(io), x(io». Also,
if II v(io) - vo(io)11 < € and v(io) E Kx . (vo(io), x(io», define i

o

'0

lv(io),
v(i) =

(1 - ~) vo(i) + ~ xCi),

if i=io ,

if i #- io •

Then II v - VO II < € and v E K(vo ,x), so that II v II < 1. In particular,
II vUo)11 < 1. This shows that vo(io) is strongly nonlunar.

Conversely, suppose that for each i E crit vo, vo(i) is strongly nonlunar.
Thus, for every i E crit Vo , if u(i) E Kx (vo(i), 0), there exist y(i) E Bx.(O, 1) and
€(i) > 0 such that u(i) E Kx.(vo(i), .r(0), and if II v(i) - vo(i)11 -< €(i) and
v(i) E Kx(vo(i), y(i), then II v(l)11 < 1. We may assume that II vo(i) - y(i)11 is
constant' for i E crit Vo . Now

sup II vo(i)11 = 1 - :)
ifcritvo

for some :) > O.

Let € = min{o, miniEcrlttl €(i)} and define x byo

if i E crit Vo ,

if i i crit Vo •
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Then II x II < 1 and crit(vo - x) = crit Vo . Let U E K(vo , 0). Then for every
i E crit Vo , we have u(i) E KXi(vo(i), 0), and so

u(i) E KXi(vO(i), y(i») = Kx,(vo(i), x(i)),

i.e., U E K(vo,x). If II v - Vo II < e and v E K(vo ,x), then II v(i) - vo(i)11 < e
for every i, and for each i E crit Vo, v(i) E Kx.(vo(i), xCi») and so II v(i)11 < 1. If
i ¢ crit Vo , then II v(i)11 < II vo(i)11 + e ~ 1 -' S + e ~ 1. Thus II v II < 1. We
have shown

B(vo , e) n K(vo , x) C B(O, 1),

and so Vo is strongly nonlunar.
The proof of the analogous result with the QP condition is similar, but

simpler. I
As an easy consequence of this lemma we obtain

THEOREM 3.2. Let X = (TIiEI Xi)c ([). Then X is strongly nonlunar (resp.o
QP) ifand only ifeach Xi is strongly nonlunar (resp. QP).

COROLLARY 3.3. For any index set T, the space co(T) is QP.

We turn next to the II-product of a finite number of normed linear spaces.
Let X = (fliEI Xi)! ([) , and Vo , x E X. Then

1

K(vo, x) = jv E X: I x*(i)[v(i) - vo(i)] < 0 whenever
ieI

x*(i) E (ext) P[vo(i) - x(i)].l

LEMMA 3.4. Let X = (Xl X X2)z ([) , where I = {I, 2}, and let Vo E SeX).
1

Ifvo(i)/II vo(i)11 is QP in S(Xi) whenever vo(i) =1= 0, then Vois QP in SeX).

Proof Assume first that both vo(I) and vo(2) are =1= O. By assumption, we
can choose an e,

o < e < min ( II V~l)lI , II V~2)1I )

such that for i = 1,2,
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Now let v E K(vo, 0) 11 B(vo ,E). Thus II v(l) - vo(1)11 + II v(2) - vo(2)11 < E
and

max x*(1)[v(l) - vo(l)] + max x*(2)[v(2) - vo(2)] < O.
X*(l)EP[Vo(l)] X*(2)EP[Vo(2)]

There is a scalar ex such that

max x*(I)[v(1) - vo(l)] < ex,
x*(l)EP[vo(I)]

max x*(2)[v(2) - vo(2)] < -ex.
X*(2)EP[Vo(2)]

Since v E B(vo , E), it follows that I ex 1 < E. If x*(I) E P[vo(I)], then

* [v(1) vo(1) ]
x (1) II vo(I)11 + ex - II vo(1)11

II vo(1)11 *
II vo(I)11 (II vo(1)11 + ex) {x (1)[v(l) - vo(1)] - ex} < 0

so

v(l) (Vo(I))
II vo(1)11 + ex E K X1 II vo(1)11 ,0 .

Moreover,

II
v(l)

II vo(1)11 + ex
vo(l) 11:< II v(1) - vo(1)11 I ex I

II vo(1) II -...::: 1\ vo(1)11 + ex + II vo(1)11 + ex

< E + E <
II vo(1)11 + ex II vo(1)11 + ex

4E
II vo(1)11 '

or II v(1)11 < II vo(I)11 + ex.

so that, by (1), we have

II v(1)11
II vo(I)11 + ex < 1

Similarly, we get II v(2)1\ < II vo(2)11 - ex. Hence

II v II = II v(l)11 + II v(2)11 < II vo(I)11 + II vo(2)11 = 1.

Thus B(vo , E) 11 K(vo , 0) C B(O, 1) and so Vois QP. In the case when vo(1) = 0
or vo(2) = 0, the proof is similar but simpler. I

By induction, we obtain

LEMMA 3.5. Let X = (TIie1 Xi )£1(1) , where I is finite and VoE SeX). If
vo(i)/II vo(i)1I is QP in SeXi ) whenever vo(i) =1= 0, then Vo is QP in SeX).
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As an immediate consequence of this lemma, we have
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THEOREM 3.6. Let X = (ITieI Xi)l (I), where I is finite. If each of the
1

spaces Xi is QP, then X is QP.

Remark 3.7. An analogous result for I infinite is not valid since (by
Theorem 5.6 in the sequel) Ii is not a QP-space.

4. THE SPACE Co(T)

Throughout this section T will denote a locally compact Hausdorff space
and X = Co(T)-the space of real-valued continuous functions on T,
vanishing at infinity, endowed with the uniform norm [18; p. 86]. Thus
x E X iff x is continuous and, for each € > 0, the set {t E T: I x(t)[ ~ €} is
compact. Since the extreme points of S(X*) are just (plus or minus) the
"point evaluations", we may identify ext P(x) with

crit x == crit x+ u crit X-,

where
crit x± = {t E T: x(t) = ± II x II}.

Hence, for any Vo , x E X, we have

K(vo , x) = {v EX: vet) < vo(t)

vet) > vo(t)

if t E crit(vo - x)+,

if t E crit(vo - x)-}.

THEOREM 4.1. CoCT) is strongly nonlunar.

Proof Let Vo E SeX) and Vi E K(vo , 0). Choose 0 < S < I such that

S < min{1 vo(t) - v1(t) I : t E crit vo},

and set

Let V+, V- be, respectively, disjoint neighborhoods of K+, K-. Note that
K+, K- are compact G6's, K+:J crit vo+, and K-:J crit vo-' By Urysohn's
lemma, we can choose a functionfE Co(T) such that

I 1/2

f= -~/2

onK+
on K-,
off V+ u V-,
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and If I < t off K+ v K-. Set x = Vo - f Then II x - VO II = t,

crit(vo - x)+ = K+,

and crit(vo -- x)- = K-. Since V1 < Voon K+, and V1 > Voon K-, V1 E K(vo , x).
Let J = {t : Ivo(t) I~ 1/2}. Since crit Vo C int(K+ v K-) and J '""'" int(K+ v K-)
is compact ("int" means "interior of"), it follows that

sup{1 vo(t)1 : t E J '""'" int(K+ v K-)} = 1 -- 01

for some 01 > O. Set E = min{016, 01/2}. Let v E B(vo , E) () K(vo ,x), i.e.,
II VO - v II < E, v < Vo on K+, and v > Vo on K-. In particular, I v I < 1 on
K+ v K-. If t E J'""'" K+ V K-, then

I v(t)1 < I vo(t) I + E ~ 1 -- 01 + E < 1.

If t rt J, then

I v(t)1 < I vo(t)I + E < 1/2 + E ~ 1.

Thus II v II < 1 and so, B(vo , E) () K(vo , x) C B(O, 1), i.e., Vo is strongly non­
lunar. I

From Theorems 2.18 and 4.1, we immediately obtain

COROLLARY 4.2. In Co(T), a set is a sun if and only if it is a moon.

LEMMA 4.3. Let Vo E S(Co(T)). Then Vo is QP if and only if crit Vo is clopen
(i.e., both open and closed).

Proof Let Vo be QP. Choose an E > 0 such that

B(vo, E) () K(vo ,0) C B(O, 1).

Suppose sup{1 vo(t)I : t rt crit vo} = 1. Without loss of generality, we may
assume sup{vo(t) : t rt crit vo} = 1. Choose to E T'""'" crit Vo such that

vo(to) > 1 -- E/2.

Using Urysohn's lemma, choose an x E Co(T) such that

I-E/2 on crit vo+,
x = /E/2 on {to} V crit Vo-,

and I x I ~ E/2 everywhere. Setting v = Vo + x, we see that II v - VO II < E

and I v(t)1 < 1 on crit Vo , i.e., v E B(vo , E) () K(vo , 0). But

v(to) = vo(to) + E/2 > 1, so II v II > 1.



SUNS, MOONS, AND QUASI-POLYHEDRA

This contradiction shows that

sup{1 vo(t)I : t If crit vol < 1,

i.e., there exists a > 0 such that

crit Vo = {t E T: I vo(t)I > 1 - a}.

Hence crit Vo is open. Also, crit Vo is always closed.
Conversely, suppose crit Vo is open. Then there is a> 0 such that

crit Vo = {t : I vo(t)I > 1 - a}.
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Let € = a12. If v E x, II v - Vo II < €, and I v(t)1 < 1 on crit vo , then for any
t E T "-' crit Vo , we have

! v(t)1 < I vo(t)! + € ~ 1 - a+ € < 1

and so, II v II < 1. We have shown that B(vo , €) n K(vo , 0) C B(O, 1) and so,
Vo is QP. I

THEOREM 4.4. The following are equivalent:

(1) Co(T) is a QP-space.

(2) crit Vo is clopen for every Vo E Co(T).

(3) T is discrete.

Proof The equivalence of (l) and (2) is an immediate consequence of
Lemma 4.3.

(3) => (2). If T is discrete, then every subset of Tis clopen.

(2) => (3). Suppose crit Vo is open for every Vo E X. If To C T is com­
pact, then every continuous function on To must have a finite range. Using
the regularity of To , it would then follow that To is finite. Hence compact
sets are finite; so T is discrete. I

5. THE SPACE L 1(T, 1:, /-,)

In this section, unless otherwise specified, (T, E, /-,) will denote a a-finite
measure space and X = L 1 = L 1(T, E, fJ-) the space of all real-valued
integrable functions x on T, endowed with the norm

II x II = fT I x(t)[ d/-'.
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We shall abbreviate "/L-almost everywhere" to "a.e." The zero set of a given
measurable function x is defined, modulo a set of measure zero, by

Z(x) = {t EO T: x(t) = O}.

The support of x is defined by

supp x = T'"'" Z(x) = {t : x(t) =1= O}.

A set A EO E is called an atom if 0 < /L(A) < 00 and each measurable subset
Be A satisfies either /L(B) = 0 or /L(B) = /L(A). It is well known (and easy
to prove) that (T, E, /L) can have at most countably many atoms. A subset of
T is called purely atomic if it is the union of atoms. Each measurable function
x must be constant a.e. on an atom A. We denote this value by x(A).

LEMMA 5.1. Let Vo E S(L1). Then

a(vo) = {x EX: I x I··~ I Vo I a.e., and sgn x = sgn Vo a.e. on supp x}.

Proof We have x E a(vo) iff II Vo - x II + II x II = II Vo II. By the condition
for equality in the triangle inequality [18, p. 192], this is equivalent to the
existence of a positive measurable function p such that

Vo = (1 + p) x a.e., on sUPP[(vo - x) x]. (*)

But (*) is clearly equivalent to I x I ~ I Vo I a.e. and sgn x = sgn Vo a.e. on
supp x. I

The following result is the main tool of this section.

LEMMA 5.2. Let Vo E S(L1). Consider the statements:

(1) supp Vo is purely atomic,

(2) Vo is strongly nonlunar,

(3) Vo is nonlunar,

(4) supp Vo contains an atom.

Then (1) ::> (2) ::> (3) ::> (4).

Proof (1)::> (2). Let supp Vo = UiEI Ai, where the Ai are atoms and I
is some (countable) index set. Let VI E K(vo , 0), i.e.
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Bya limit argument (using e.g., the dominated convergence theorem) one can
readily show that there exists 0 > 0 such that

L [vI(A;) - vo(A i)] f'(A;) - L [vI(A;) - vO(A i)] f'(A i )
]8+ ]8-

+ f I VI I df' + L I vI(A i ) - vo(A;) I p(A;) < 0,
z(vo) !N!8+U !8-

where 18+ = {i E I: vo(A i) p(Ai) > o}, and 18- = {i E I: vO(A i) p(Ai) < -o}.
Define a function x by

x(t) = IVo(Ai),
0,

if tEA; and iE 1'"'-' 18+ U 18-,

otherwise.

Then x E U7(vo) and

K(vo , x) = Iv E X: f (v - vo) df' - f (v - vo) df'
~ Vo>Z vo<a:

. + fVo=X I v - Vo I df' < o!
= Iv E X: L [v(A;) - vO(A i)] f'(A i ) - L [v(A;) - vo(A;)lf'(A i)

]8+ ]8-

+ f I v I df' + L I v(A i) - vo(Ai)If'(A;) < 01·
Z(Vo) ]N!8+U ]8-

In particular, VI E K(vo , x). Choose any 0 < E < 8. Let

v E B(vo , E) n K(vo , x).

Then

I vo(A;) - v(Ai)If'(A i) < E < 0, for all i E I,

so that sgn v(Ai) = sgn vO(A i ) if i E 18+ U 18-, Thus

II v II - 1 = II v II - II Vo II

= L [v(Ai ) - vO(Ai)] f'(A i) - L [v(A i) - vo(Ai)lf'(Ai )
!8+ 18-

+ L [I v(Ai)1 - Ivo(Ai)llf'(A i) + f I v I df'
]N]8+U ]8- z(vo)

:s;; L [v(Ai) - vO(A i)] f'(A i ) - L [v(Ai) - vo(Ai)lf'(A i )
18+ !8-

+ L I v(Ai) - vo(Ai)1 f'(A i) + f 1v I dp < 0,
]N]8+U ]8- Z(Vo)
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since v E K(vo , x). Hence

AMIR AND DEUTSCH

R(vo , E) n K(vo , x) C R(O, I)

and so, Vo is strongly nonlunar.
The implication (2) => (3) is obvious.

(3) => (4). If Vo is nonlunar, then there is x E a(vo) and E > 0 such that

R(vo , E) n K(vo , x) C R(O, 1).

By Lemma 5.1, for almost all t E T, either 0 :(;; x(t) :(;; vo(t) or vo(t) :(;; x(t) :(;; O.
Now

Let T+ = {t E supp Vo : vo(t) > x(t)} and T- = {t E supp Vo : vo(t) < x(t)}.
It follows that either p.(T+) > 0 or p.(T-) > O. We may assume p.(T+) > 0;
the case p.(T-) > 0 can be treated similarly. If supp Vo contained no atom,
then neither would T+. Hence we can choose a sequence (En) of disjoint
subsets of T+ with 0 < p.(En) < 00. Since

we have IE I Vo I dp. -- O. Choose N such that IE Vo dp. < E/4, and let
00 N N

E = Ul En . Define a function v by

where

!Vo

v = (1 + 0) Vo
-2vo

on T,..."E,
onE ,..."EN ,

onEN ,

Then
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II v - VO II = S f I Vo I djL + 3 f I Vo I djL = 4 f I Vo I djL < e,
E-EN EN EN

i.e., v E B(vo , e), but

II v II = f I Vo I djL + (1 + S) f I Vo I djL + 2 f I Vo I djL
T_E E-EN EN

= 1 + S J I Vo I djL + J I Vo I djL > 1.
E-EN EN

However, this contradicts

B(vo , e) n K(vo , x) C B(O, 1)

and completes the proof. I
From this result we immediately obtain

COROLLARY 5.3. If supp Vo contains no atom, then Vo is a lunar point of
S(L1). In particular, if T contains no atoms, S(L1) is a moon.

Another easy consequence of Lemma 5.2 is

THEOREM 5.4. The following are equivalent:

(1) L 1(T, l:, jL) is strongly nonlunar,

(2) each point ofS(L1) is nonlunar,

(3) T is purely atomic,

(4) L1(T, l:, jL) is (isometrically isomorphic to) a space of type 11 or 11n,

forsomen.

Proof The implication (1) ~ (2) is obvious.

(2) ~ (3). If T were not purely atomic, there would exist a set EEl:,
with 0 < jL(E) < 00, containing no atoms. Then the support of the element
Vo = l}.t(E)J-1 XE would contain no atom. By Lemma 5.2, Vo would be lunar.

The equivalence (3) -¢> (4) is well known.

(3) ~ (1). Since T is purely atomic, so is supp Vo for every Vo E S(L1).

By Lemma 5.2, it follows that L 1(T, E, jL) is strongly nonlunar. I

LEMMA 5.5. Let Vo E S(L1). Then Vo is a QP point if and only ifsupP Vo is a
finite union of atoms.
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Proof Let Vobe QP. Then there is an € > 0 such that

B(vo , €) n K(vo , 0) C B(O, 1).

Let

T+ = {t E T: vo(t) > O}, T- = {t E T: vo(t) < O}.

If supp Vo were not a finite union of atoms, then supp Vo would contain either
an infinite number of atoms or a set of positive measure which has no atoms.
In either case, one of the sets T+ or T- would contain a sequence (En) of
disjoint sets with 0 < I-dEn) < 00. We may assume it is T+ as the other
possibility can be treated similarly. The proof now proceeds exactly as that of
the implication (3) =:> (4) in Lemma 5.2 (taking x = 0). Thus we can construct
a function v E B(vo , €) n K(vo , 0) with II v II > 1 and get a contradiction.

Conversely, suppose supp Vo = U~=l Ai, where each Ai is an atom; we
can assume p.(Ai n A;) = 0 if i =1= j. Choose € > 0 such that

€ < t ~in I vo(Ai)j p.(Ai).
l:o:.:;;t~n

Let v E B(vo , E). Then sgn v(Ai) = sgn vo(Ai) for i = 1,... , n. If v is also in
K(vo , 0), then

II v II - 1 = II v II - II Vo II

= f (v - vo) dp. - f (v - vo) dp. + f I v I dp. < 0,
vo>o vo<o z(vo)

i.e., II v II < 1. Hence B(vo , €) n K(vo , 0) C B(O, 1) and so, Vo is QP. I
From this lemma we immediately obtain

THEOREM 5.6. The following are equivalent:

(1) L1(T, E, p.) is a QP-space.

(2) T is a finite union ofatoms.

(3) L1(T, E, p.) is (isometrically isomorphic to) a space of type lIn for
somen.

6. RELATED MATTERS AND SOME OPEN QUESTIONS

Let T be a comp'act Hausdorff space, X a real normed linear space, and let
C(T, X) be the normed linear space of all X-valued continuous functions f on
T, with the max ,norm: Ilfll = maXtET Ilf(t)llx. If T is a singleton,
C(T, X) = X; while if X = R, C(T, X) = C(T). It is natural to ask questions
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like "if X has a certain property, does qT, X) too have this property?" In
particular, the following problem is unsettled:

Problem 6.1. If X is strongly nonlunar (or even QP), is qT, X) strongly
nonlunar?

We do have the following partial answer to this question: If T isfinite, then
qT, X) is strongly nonlunar (resp. QP), if X is strongly nonlunar (resp. QP).
This fact is a consequence of Theorem 3.2, since we may regard qT, X) as
(TItET Xt)c (T) , where Xt = X for every t E T. .o

Another open question is whether the converse of Theorem 2.18 holds.
Thus

Problem 6.2. If each moon in Xis a sun, must Xbe strongly nonlunar?
We have seen that there are strongly nonlunar spaces which are not QP.

However, we know of no finite-dimensional example.
In [12], Brown introduced the concept of a normed linear space having

property (P). (X has property (P) if for each pair of points x, z in X, with
II x + z II ~ II x II , there are positive constants A, E such that II y + Az II ~ II y II
whenever II x - y II < E.) Brown observed that every strictly convex space
has (P), and so does every finite-dimensional space whose unit ball is a
convex polytope. He also showed that a space X has (P) if and only if the
metric projection onto any finite-dimensional subspace of X is lower semi­
continuous (cf. also [2].) Blatter, Morris and Wulbert [2] have shown that
Co(T) has property (P) if and only if T is discrete. Also, they verified that
L 1(T,.E, JL) has property (P) if and only if T is a finite union of atoms. In [1]
Blatter proved, among other things, that (fliEI Xi)c (I) has property (P) ifo
and only ifeach of the spaces Xi has (P). Thus, in the spaces Co(T), L 1(T,.E, fl-)
and (TIiEI Xi)c (]) , property (P) is equivalent to QP.o

Deutsch and Lindahl [15] have studied the minimal extremal subsets of
the unit sphere. Let VoE SeX) and let E(vo) denote the minimal extremal subset
of SeX) which contains Vo • Then X is said to have property Q if, for each
VoE SeX), the set E(vo) is the intersection of all the exposed sets in SeX) which
contain Vo . It was shown in [15] that Co(T) has property Q if and only if Tis
discrete; L1(T, .E, fl-) has property Q if and only if T is a finite union of atoms;
every finite-dimensional space whose unit ball is a polytope has property Q.

Thus, from the preceding two paragraphs, we have

THEOREM 6.3. Let X = Co(T) or X = L 1(T,.E, fl-). Then the following are
equivalent:

(1) X is QP.

(2) X has property (P) (of [12]).

(3) X has property Q (of [15]).
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If X = CoCT), each of these conditions is equivalent to T being discrete. If
X = L 1(T, E, /l-), each of these conditions is equivalent to T being a finite
union of atoms.
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